Die Veränderungen im Jetstream werden zumindest teilweise vom Rückgang des arktischen Meereises verursacht, so das Ergebnis der Untersuchungen. (Foto: IceCam/Stefan Hendricks)

Atmosphärenforscher des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) haben ein Klimamodell entwickelt, das den immer öfter beobachteten Schlängelkurs des Jetstreams, einer großen Luftströmung über der Nordhalbkugel, richtig abbilden kann. Dieser Durchbruch gelang, nachdem die Wissenschaftler ihr globales Klimamodell mit einem neuen Machine-Learning-Algorithmus zur Ozonchemie kombiniert hatten. Mithilfe dieses neuen Kombi-Modells können die Forscher also nun zeigen, dass der wellenförmige Verlauf des Jetstreams im Winter und die damit verbundenen Extremwetterlagen wie Kälteeinbrüche in Mitteleuropa und Nordamerika eine direkte Folge des Klimawandels sind. Die neuen Forschungsergebnisse erscheinen am 28. Mai 2019 im Nature-Online-Portal Scientific Reports.

Klimaforscher aus der ganzen Welt gehen seit Jahren der Frage nach, ob der immer häufiger beobachtete Schlängelkurs des Jetstreams über der Nordhalbkugel eine Folge des Klimawandels ist, oder aber ein zufälliges Phänomen, dessen Ursachen auf natürliche Schwankungen im Klimasystem zurückzuführen sind. Als Jetstream wird ein starkes Westwindband über den mittleren Breiten bezeichnet, welches die großen Wettersysteme von West nach Ost schiebt. Der Wind weht in etwa 10 Kilometern Höhe rund um die Erde, wird von den Temperaturunterschieden zwischen Tropen und angetrieben und erreichte früher Spitzengeschwindigkeiten von bis zu 500 Kilometer pro Stunde.

Mittlerweile aber, so zeigen Beobachtungen, schwächt sich der Wind immer wieder ab. Er weht dann seltener auf einem geradlinigen Kurs parallel zum Äquator, sondern schlängelt sich öfter in Riesenwellen über die Nordhalbkugel. Diese Wellen wiederum führen im Winter zu ungewöhnlichen Kaltlufteinbrüchen aus der Arktis in die mittleren Breiten – so geschehen zum Beispiel Ende Januar 2019 als der Mittlere Westen Nordamerikas von extremer Kälte heimgesucht wurde. Im Sommer dagegen verursacht ein schwächelnder Jetstream langanhaltende Hitzewellen und Trockenheit wie sie Europa unter anderem in den Jahren 2003, 2006, 2015 und 2018 erlebte.

Machine Learning lässt Klimamodell die Rolle des Ozons verstehen

Diese grundsätzlichen Zusammenhänge sind seit einiger Zeit bekannt. Forschern war es bislang aber nicht gelungen, den Schlängelkurs des Jetstreams in Klimamodellen realistisch zu reproduzieren und einen Zusammenhang zwischen dem schwächelnden Wind und den globalen änderungen herzustellen. Diese Hürde haben die Potsdamer Atmosphärenforscher am AWI nun genommen, indem sie ihr globales Klimamodell um einen innovativen Baustein der Ozonchemie ergänzt haben. „Wir haben einen Machine-Learning-Algorithmus entwickelt, welcher es uns erlaubt, die Ozonschicht als interaktives Element im Modell darzustellen und daher die Wechselwirkungen aus der Stratosphäre und der Ozonschicht mit zu berücksichtigen“, sagt Erstautor und AWI-Atmosphärenforscher Erik Romanowsky. „Mit diesem Modellsystem sind wir jetzt in der Lage, die beobachteten Veränderungen im Jetstream realistisch zu reproduzieren.“

Demnach führt der Meereisrückgang und die damit verbundene größere Aktivität atmosphärischer Wellen zu einer durch das Ozon verstärkten deutlichen Aufheizung der polaren Stratosphäre. Da die tiefen polaren Temperaturen der Antrieb für den Jetstream sind, schwächt dieser sich durch diese Temperaturerhöhung in der Stratosphäre ab. Diese Abschwächung des Jetstreams setzt sich nun ausgehend von der Stratosphäre nach unten durch, was zu Wetterextremen führt.

weiterlesen … / Quelle: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)